ARSET Applied Remote Sensing Training http://arset.gsfc.nasa.gov @NASAARSET # NASA Trace Gas Products for Air Quality Applications Pawan Gupta & ARSET Team Satellite Remote Sensing of Air Quality: Data, Tools, and Applications Tuesday, May 23, 2017 – Friday, May 26, 2017 Indian Institute of Tropical Meteorology, Pune, India # Satellite Remote Sensing of Trace Gases for Air Quality in a Nutshell ### Surface Monitoring - Compared to aerosol instrumentation, satellite trace gas instrumentation is generally **not as sensitive** to surface pollution - -Exceptions: nitrogen dioxide and sulfur dioxide ### Emissions Inventories and Modeling Trace gas observations from space have been useful for constraining emissions inventories ### Vertical Profile Information in the Free Troposphere Also available for some products (e.g. CO) and derived using the pressure dependence of spectral bands # Satellite Remote Sensing of Trace Gases for Air Quality in a Nutshell ### Nitrogen Dioxide - Good sensitivity in the planetary boundary layer (PBL) - -Fire smoke, industrial and transportation sources, stationary sources, top-down emissions inventories ### Sulfur Dioxide, Ozone, and Formaldehyde - -Limited sensitivity in the PBL - Sensitive to large point sources, such as electrical generating units and volcanoes # Satellite Remote Sensing of Trace Gases for Air Quality in a Nutshell - Carbon Monoxide - –Good mid-tropospheric sensitivity - Useful for monitoring long-range transport of smoke - Carbon Dioxide and Methane - -Low spatial resolution - -Captures global trends ### Measuring Trace Gases from Space - Detect backscattered and/or emitted thermal radiation - We know the distinct absorption spectra of each trace gas - We can identify a "fingerprint" for each atmospheric constituent - Retrieval algorithms (a model) infer physical quantities such as number density, partial pressure, and column amount ### How Satellites Measure Trace Gases - Trace gases use the signature of gas absorption - All satellite remote sensing measurements of the troposphere are based on the use of electromagnetic radiation and its interaction with constituents in the atmosphere # Satellite Measurements Take Advantage of Distinct Absorption Spectra ## Vertical Distribution of O₃, SO₂, and NO₂ - Very little information can be obtained on the vertical distribution of trace gases - Measurements at different wavelengths (technique of combining UV, visible, and IR measurements) provide some vertical information - –penetration depth of photons increases with increasing wavelengths - –Example: volcanic plumesof SO₂ # Hyperspectral Instruments Satellite UV-Visible Spectrometers | Instrument | Satellite | Wavelength | |------------|-----------|---------------| | GOME | ERS-2 | 240 – 800 nm | | SCIAMACHY | Envisat | 240 – 1750 nm | | OMI | EOS-Aura | 270 – 500 nm | | GOME-2 | Metop-A | 240 – 800 nm | ### Data Formats & Resolutions | Data Level | Description | |--------------|--| | Level 0 | Raw data at full instrument resolution | | Level 1A | Raw data, including radiometric and geometric calibration coefficients and geo-referencing parameters (e.g. platform ephemeris) computed and appended, but not applied to Level 0 data | | Level 1B | Level 1A data that has been processed to sensor units (not all instruments have Level 1B source data) | | Level 2 | Derived geophysical variables at the same resolution and location as Level 1 source data | | Level 2G & 3 | Variables mapped on uniform space-time grid scales, usually with some completeness and consistency | | Level 4 | Model output or results from analyses of lower level data (e.g. variables derived from multiple measurements) | ### **Spatial Resolution: Trace Gases** - Spatial resolution of current satellite instruments (10s of km diameter) - good enough to map tropospheric concentration fields on local to regional scales - -fine enough to resolve individual power plants and large cities - For species with short atmospheric lifetimes (e.g. NO₂), averaging over larger satellite pixels can lead to significant dilution of signals from point sources, complicating quantitative analysis and separation of emission sources - For quantitative analysis: Level 2 and high resolution gridded Level 3 data are optimal Source: Richter, 2010 ## Advantages of Using Level 3 vs. Level 2 Data - Uniform grid - One file per day - Smaller sized files - Quality flags and filtering criteria have been applied ### Perspective... ### Quantification of Gas Abundances | Satellite Tracer | Units | |--|---------------------------| | OMI O ₃ , SO ₂ | Dobson Units | | OMI NO ₂ , Column Amounts (also AIRS and MOPITT CO) | Molecules/cm ² | | AIRS and MOPITT CO
Vertical Levels | Volume Mixing Ratio | ### Ozone Measuring Instrument (OMI) - Launched July 15, 2004 - NASA EOS Aura Satellite - Nadir-viewing UV/Visible - -270 310 nm at 0.6 nm - -310 500 nm at 0.45 nm - 1:40 p.m. equatorial crossing time - 13x24 km² at nadir - Daily global coverage - Products - -Total Column O₃ - -Tropospheric Column O₃ (experimental but not applicable in the midlatitudes) - Aerosol optical depth (in UV) - -Column Formaldehyde - -Column NO₂ - -Column SO₂ #### **Data Granule** - Product File - –covers sunlit portion of the orbit with an approx. 2,600 km wide swath - -contains 60 binned pixels or scenes per viewing line - 14 or 15 granules are produced daily, providing fully contiguous coverage of the globe ### Important Information Regarding OMI - Almost 50% data loss since 2008 (row anomaly effect) - Affects O₃, SO₂, and to some extent NO₂ OMI products ### OMI Ozone in the Troposphere - OMI is not sensitive to ozone near the surface - There are tropospheric ozone products in development - -they currently cannot be used for air quality monitoring - Retrieval of boundary layer O₃ from satellite remote sensing remains a daunting task ## OMI Formaldehyde (CH₂O) - Data is reliable for 2004-2009 only - Data re-processing is planned to account for the growing background noise and row anomalies HCHO is a proxy for isoprene emissions Source: Martin, Randall. Satellite remote sensing of surface air quality. Atmospheric Environment 42(34), 7823-7843, 2008. ### OMI SO₂ in the Boundary Layer - Dataset Short Name = OMSO2e - -Product Level: 3 - -Begin: October 1, 2004 - Resolution: 0.25° lon x0.25°lat - Cloud-screened best measurement - -Frequency: daily - -Granule (File) Coverage:15 orbits - -File Size (approx): 5 mb - Contains best pixel data, screened for OMI row anomaly, clouds, and other data quality flags - Data: http://disc.sci.gsfc. nasa.gov/Aura/data holdings/OMI/omso2e_v00 3.shtml ### Perspective: What is Considered High SO₂? ## 2005-2010 Mean SO₂ Over Canadian Oil Sands McLinden, C. A., et al. (2012), Air quality over the Canadian oil sands: A first assessment using satellite observations, Geophys. Res. Lett., 39, L04804, doi:10.1029/2011GL050273. ## OMI SO₂ from Kasatochi Volcano August 8-12, 2008 ## Perspective: What is considered high SO₂? ## U.S. Source #1: Bowen Coal Power Plant, Georgia (3500 MW), SO₂ Emissions: 170 kT in 2006 "In **2008**, the mammoth construction program yielded the first scrubbers, sophisticated equipment that will reduce our overall systems emissions by as much as 90 percent" #### Georgia Power website Source: V. Fioletov, et al., 2011 ## OMI NO₂ ## Nitrogen Dioxide (NO₂) - NO₂ is produced when coal and gasoline are burned - -comes out of tailpipes and smokestacks - Unhealthy to breathe and correlated with morbidity and mortality - likely since it is emitted alongside air toxins & is a necessary ingredient for ozone formation Source: Duncan, B.N. et al. (2016) # OMI Detects NO₂ Increases from ONG Activities 2005-2014 North Dakota **Suomi NPP VIIRS Lights at Night** Texas National Aeronautics and Space Administration ### Satellite and AQS NO2 Trends ## Estimating Satellite Based Surface NO₂ Scattering by Earth surface and atmosphere $$\mathbf{S}_{\mathrm{O}} = \mathbf{\Omega}_{\mathrm{O}} \left[\frac{\mathbf{S}_{\mathrm{M}}}{\mathbf{\Omega}_{\mathrm{M}}} \right]$$ #### **Model Profile** **S** → Surface Concentration $\Omega \rightarrow$ Tropospheric column ## Ground-Level Afternoon NO₂ Inferred from OMI for 2005 - Also available at: http://fizz.phys.dal.ca/~atmos/ - Note: this is a research product and not an official NASA product Source: Lok Lamsal ### Carbon Monoxide - Top Column Density - Also sensitive to vertical distribution of CO - Greatest sensitivity to CO variability is at 500 mb Mixing ratio can be larger away from the source ### **Current CO Sensors** ## AIRS: Atmospheric Infrared Sounder ## MOPITT: Measurements of Pollution in The Troposphere IASI: Infrared Atmospheric Sounding Interferometer ### Atmospheric Infrared Sounder (AIRS) ### http://airs.jpl.nasa.gov/ - Operational since Sep 2002 - Nadir sounding instrument - Pixel size - -14 km at nadir - -41x21 km edges - Swath Width: 1,650 km - Equator Crossing Times - -1:30 (ascending) - -13:30 (descending) - Column Measurements in molecules/cm³ - Profile Measurements: - -9 vertical layers - -901.866 hPa 0.16 hPa - Data source: Level 2 pixel and Level 3 gridded 1° x1° resolution ### **AIRS** - Has excellent global coverage with 'minor' gaps – particularly over CONUS - Can easily track biomass burning plumes - –AIRS swath width is~1650 km where MOPITT is640 km - Twice daily coverage with AIRS (daytime and nighttime) - Ascending Orbit = Daytime - Descending Orbit = Nighttime ### AIRS vs. MOPPITT CO #### **AIRS Level 2 from NRT Website** ## AIRS Level 3, 1° x1° from MOPPITT Level 3, 1° x1° ## Long Range Transport of CO ## OMI SO₂ Gridded Product Summary | SO ₂ Product | Level | Data Short
Name | Sensitivity | Use | |---------------------------|--|----------------------------|---------------------------|--| | PBL SO ² | L3
0.25° x0.2
5° | OMSO2e | 0.6 km | Fossil fuel, industry | | TRL SO ² | L2G
0.25° x0.2
5° | OMSO2G | 3 km | Industry outflow | | TRM SO ² | L2G
0.25° x0.2
5° | OMSO2G | 5 km | Optimized for volcanic degassing | | CayeatoUnl
screened fo | L2G
ikeչthe _x QMS
r ₅ clouds, sz | SORSÓÞest
a, quality fl | , prթվաct,
ags, and ro | LEXO OSANO PROPERTO LE VINTO PROPINS DE LA P | ## Level 2 Pixel (Footprint) Size at Nadir | NASA | AIRS | 14 x 14 km | | | |------|-----------|--------------------|--|--| | NASA | MOPITT | 22 x 22km | | | | NASA | TES | ■ 8.3 km
5.3 km | | | | esa | SCIAMACHY | 30 km
60 km | | | | esa | IASI | 12 x 12 km | | | | | MOPITT | AIRS | TES | IASI | SCIAMACY | |---|--|--------------------------------|---|--------------------------------|------------| | Product /
Pixel size | 22 x 22 km | 14 x 14 km | 5.3 x 8.3
km
100 m
between
pixels | 50 km
12 x 12
km | 30 x 60 km | | Swath
Width | 650 km | 1,650 km | N/A | 2,200 km | 1,000 km | | Global
Coverage /
Repeat
Cycle | 3 day
composite
for global
coverage | 2x per day
(day &
night) | 16 day
repeat
cycle | 2x per
day (day
& night) | 6 days | | Overpass
Time | 10:30 | 13:30 | 2:30, 14:30 | 9:30,
21:30 | 10:00 | | | MOPITT | AIRS | TES | IASI | SCIAMACY | |-------------------------|----------------------------------|-------------------------|-------------------------|-------------------------|----------------------| | Product
Resolution | L3
1° Grid | L3
1°
Grid | L3
5 x 8 km | NO L3
Product | L3
0.5° Grid | | Products
Available | L2
L3, Daily,
Monthly | L2
granule
L3 | L2 granule | L2
NOAA &
ESA | 2B-swath
3-global | | Vertical
Sensitivity | mid & lower
troposphere | mid
tropo-
sphere | mid & lower troposphere | mid
tropo-
sphere | total column
only | | Product
Accuracy | TIR: 10%
Near
Surface: 30% | 10-20% | 20% | <10% | 10-20% | | | MOPITT | AIRS | TES | IASI | SCIAMACY | |-------|------------------------|---|---|--|----------| | Notes | • TIR and NIR channels | QA flags in L2 and L3 Next product will include near surface | Report data for clouds 0-25% Simultaneous trace gas | 250 km sampli ng ESA Should averag e to 4 x 5° | | | | MOPITT | AIRS | TES | IASI | SCIAMACHY | |-------------------------------------|---|----------------------------------|--|--|--------------------------------| | Product/pixel size | 22 x 22 Km | 14 x 14 km | 5.3 x 8.3 KM
100 M
between
pixels | 50 KM
12 x 12 KM | 30 x 60KM | | Swath width | 650 KM | 1650 KM | N/A | 2200 KM | 1000 KM | | Global
Coverage/
Repeat Cycle | 3 Days
Composite
for global
coverage | 2X per day
(day and
night) | 16 days
Repeat
Cycle | 2X per day
(day and
night) | 6 Days | | Overpass
time | 10:30 AM | 13:30 | 2:30 AM / PM | 9:30 AM/PM | 10:00 AM | | Product
Resolution | L3
1 Degree
grid | L3
1 Degree
grid | L3
5x8km | NO L3
Product | L3
0.5 Degree
grid | | Products
available | L2
L3 Daily,
Monthly | Level 2
(granule)
Level 3 | L2 granule | L2
NOAA and
ESA | 2B -
swath
3 -
global | | Vertical
sensitivity | Mid and
lower
troposphere | Mid-
Troposphere | mid and
lower
troposphere | mid
troposphere | Total
column
only | | Product
accuracy | TIR - 10%
Near
Surface 30% | 10 - 20% | 20% | < 10% | 10 - 20% | | Other notes | TIR and NIR
Channels | QA flags in L2
and L3 | Report data for
clouds
0 -25%
Simultaneous
trace gas | 250 KM
sampling ESA
Should avg.
to 4x5 deg. | |